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Critical indices in three dimensions 
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Received 1 August 1974, in final form 4 October 1974 

Abstract. A modification of Wilson's €-expansion scaling procedure is adapted to direct 
calculation in three dimensions. The parameter log r is replaced by ( r - " *  - 1) where 
r = tY  ( t  = temperature) and all calculations are carried out directly at E = 1. Several 
conclusions are drawn: (i) Numerical agreement with the best known data for y and q is 
excellent ( I  % in y and 10% in q)  whereas the corresponding values are far less good in the 
c-expansion where q is off by a factor of more than two. (ii) The series appears to converge 
very well when corrections to the leading term are summed two by two. (iii) Extrapolations 
of the early orders of the E-expansion to f = 1 are unjustified. 

1. Introduction 

In this paper we calculate the critical indices by a technique which draws its inspiration 
from the work of Wilson (1972):: on the renormalization group and the c-expansion. 
The method we use is a Feynman graph expansion in d dimensions, hence more ap- 
plicable to the physical case E = 1 than Wilson's. The advantages of our method are: 

(i) All integrals are carried out in three dimensions. 
(ii) The zeroth order approximation contains that part of the calculation which is 

independent of the dimensional anomaly q. Thus the corrections are small (about 
5 %) because q is small. (Unfortunately however we have not succeeded in converting 
our series into an q-expansion.) Another noteworthy feature of our procedure is that 
scaling is guaranteed at each stage of approximation. This is not true of the r-expansion 
when E = 0(1) as will be shown in the text. 

On the numerical side the quantitative success of our calculation is quite remark- 
able. For the Ising model at the third stage of approximation-to be defined in the 
text-we calculate y = 1.24 and q = 0.048 as against the best series values of 

Scaling then gives v = y(2- q)- = 0.64 (best series calculation v = 0.638: E:$:, 
Jasnow et a1 1969). As one of us (Brout 1974) has emphasized these scaling type theories 
are applicable to weakly scaled quantities only and hence insufficient to calculate c1 

and 6. But where they are applicable, our approach which is numerically quite simple 
seems to supply a convenient reliable method of estimation, albeit still offering no 

t Titulaire d'un mandat de Charge de Recherche du FNRS. 
$ For a review see Wilson and Kogut (1972). 
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Critical indices in three dimensions 595 

explanation for the remarkable adherence of thermodynamic indices a, p, y, 6 to simple 
rational numbers. 

Finally, a word is in order on the convergence of our approximation scheme. As 
in all current calculations of these types there is no firm grip on the nature of the con- 
vergence of our series. However on the basis of the first few terms we deduce that the 
oscillating character of the series maintains the stability of the lowest-order calculational 
results to a remarkable precision. One should, nay must, sum the terms two by two. 
The stability of the lowest-order term against modification by further effects provides 
the explanation of the smallness of U. The lowest-order term obtains when q = 0. 

The article is organized as follows. Section 2 presents the method, the central idea 
of which is Wilson’s (1972), namely one determines an effective ‘bare’ potential, U, 
through the imposition of scaling. We remark parenthetically that this is certainly 
not the original bare interaction appearing in the Lagrangian, but rather as Wilson has 
explained an effective interaction which arises due to intermediaries of higher mo- 
mentum states which have been integrated out. Or  if one wishes it is an inversion of 
the four-point amplitude whose scaling properties are given, ie one can always express 
the four-point Green function in terms of a potential and vice versa. Imposing the 
scaling condition on one determines the other. Section 2 is divided up into subsections 
which present, respectively, the general technique, the calculation to O(u3) and the 
calculation to O(u4). 

The method is presented in the simplest and most direct way, at the expense of a 
possible misunderstanding. Namely the scaling condition is imposed in unrenormal- 
ized language where terms in powers of the cut-off are retained. This is however an 
illusory use of the cut-off. To make this point explicit we discuss in appendix 1 the 
graphs which contribute to the spherical model in terms of renormalized quantities. 
It is then seen in a simple case how the cut-off drops out in expressions for ratios of 
quantities characterized by masses or momenta small compared to the cut-off. One 
can then understand how it can come about that imposition of the scaling condition 
leads to series which are more convergent than would a priori have been expected. 

In appendix 2 we compare the scaling properties of the r-expansion with our method 
(carried out up to O(r2)). We show that when c = 1 scaling is violated in this order 
for n 5 23 in the r-expansion. 

2. Method 

2.1.  General technique 

We work with the scalar field model, 4, an n-component field. The bare Lagrangian? is 

1 =  1 

with a lower limit in spatial integrals situated at X = O ( K 1 ) .  The single-particle 

t For the precise relation between this Lagrangian and statistical models see the review article of Brout 
(1974. p 10) and the bibliography contained therein. 
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propagator is designated by S(q ,  r) ,  q is the momentum 

S(q ,  r )  = J-ddx exp(4x(4(x)4(0)) 

and r is the ‘mass’ defined by S-’(O, r )  = r = tY ,  inverse susceptibility. 
We shall calculate the four-point scattering amplitude with (amputated) legs of 

zero momentum A(r)  as a function of r as a power series in an effective potential U ,  to 
be distinguished from go of (2.1). Following Wilson, we imagine that many preliminary 
integrations of higher momentum components have been performed so that the mo- 
menta in the effective Feynman graphs generated by U run from 0 d q d i, where 
3. << A. By convention we shall set 3. equal to unity in our formulae. U is determined 
by the scaling requirement (Wilson 1972, expression 9) : 

(2.2) A ( r )  r ( f - 2 q ) / ( 2 - V ) ,  

In good approximation (about 5: ; )  one may neglect 9 in the determination of U and 
set 

A(r)  5 rr”. (2.3) 
As a first approximation we shall determine U from (2.31. This is then used to determine 

and if one wishes one may then return to include the effect of 9 in determining U as 
the beginning of a recurrence scheme. However the precision of the calculation appears 
to be of the order of 1 ”/, and at this level such a program would constitute a needless 
expenditure of time and energy. This is not to say that a careful theoretical study of 
this problem in exact terms may not be fruitful in bringing to light interesting qualitative 
information concerned with the conformal group and the simple rational numbers of 
the thermodynamic indices. Our point here is that in numerical series expansion 
methods, either E, l / n  or the present one, retention of q in (2.2) seems pointless at the 
present stage of precision. 

In addition to the amplitude A we shall calculate two properties of the propagator 
S ,  namely dS- ‘(0, r) /dq2 and dS- ‘(0, r ) / d t ;  t is the dimensionless temperature related 
to r by S-’(O, r )  = tY = r. These quantities are needed to evaluate and ;I respectively. 
All integrals in the Feynman graphs so generated will be given by a series of powers 
of ( r - f / 2 -  1). (The mechanism of cut-off is chosen so as to give this simple form.) A 
given function which scales according to, say, F X  will then be represented according to 

r - x  = C A n ( r - f ’ 2  - 1)”. 

The A,  are given by comparison with 
n 

It is seen that the exponent x is given by A through 

EA 
2 

x = 1  

As for the convergence of a series of the type (2.5), it would appear a priori that these 
series should converge very slowly since the parameter (r-‘I2 - 1) is very large. The 
point is that the theory is renormalizable and in terms of renormalized theory the 
parameter r may be interpreted to be rlr‘ where r’ is a subtraction point taken very 
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close to r .  The series will then converge rapidly and the powers of r/r' when this ratio 
is chosen near to unity are all that is required to determine the theory. Thus it is the 
renormalizability of the theory (and the concomitant re-interpretation of r in terms of 
r / r ' )  which gives sense to the study of series such as (2.4) in terms of the first few terms 
even when r << 1. This point is made clear in terms of the simple example of spherical 
model graphs in appendix 1. 

It should be noted that the expansion in powers of logr used in the Wilson's E- 

expansion presents a similar difficulty. If we expand r-'I2 as 

the series oscillates and stabilizes only after - i c  lg r terms. As c is finite, 

-+clgr  -+ x; 

when r -+ 0. The same argument as above, wherein r is to be replaced by r,/r', is then 
necessary to give a sense to this expansion as well. 

Let us now characterize the coefficient of the term in (r-'"- 1) in the various 
quantities which will be calculated. We write the scaling properties? of A,  as-'/& 
and 8s- '134, and define a, b and c by the following relations : 

whence relation (2.6) gives a, b and c in terms of the critical 

z -1 1 - (29/4 
1 - (9/2) 
2 ; a - - 1  1 
€ 7  ' 1 +at /2  

c =  - 

a = - - -  or = ~ 

(U I 2rb). h = - - -  9 9 
42-9) - 2t  

Equation (2.11) with the neglect of q is used to determine 

(2.10): 

indices ;I and U :  

(2.1 1) 

(2.12) 

(2.13) 

u. We remark that with - 

c I - 1, A is in good approximation a geometric series in (r- '"-  1). The coefficients 
a and b are then determined in terms of U, and y and 9 determined from (2.12) and (2.13). 

The expansion in Feynman graphs is given in figure 1. The cut-off procedure is 
shown in figure 2. Explanations of the graphical notation are contained in the captions. 
The subtraction procedure in mass and integrating over 0 < q < oc rather than cal- 
culating integrals from 0 < q d l is the trick that facilitates extraction of the factors 
(r-'I2 - 1). (Of course the ultimate results are independent of the cut-off procedure; 
one chooses that which is most convenient to one's purpose.) 

t See Wilson (1972. formula 9) or for more details Brout (1974. chap. 5 (relation 5.1)), 
$To obtain this relation (2.10) one uses the scaling property of S - ' ( q 2 , p 2 )  = p 2 ( p / A ) - q f ( q 2 / p z )  ( p  is the 
correlation length, p x rY) together with the existence of a limit for the derivative of f ( q 2 / p z )  when q2 -, 0. 
For the scaling relation of S- ' (y2 ,  p 2 )  see Brout (1974. chap. 6. $ 3 ) .  
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Figure 1. Graphs of the propagator: (a)  d S - * / d t ;  (b) 2 S - ' / d q 2 ;  and (c) the four-point 
amplitude A ( q 2 ,  r )  A graph is denoted in the text and the tables by a letter a, h or c', whxh 
denotes which quantify (dS- ' / d t ,  aS- ' /dq2,  A )  is being calculated. as well as by a number 
which denotes the particular graph which is being calculated. 

Figure 2. Subtraction procedure for the graph 4(c) (figure 1). The mass in a box (dotted 
lines) is set to unity; each box corresponds to a multiplicatnr factor of - 1. 

The calculated values of the various graphs are tabulated in tables 1, 2 and 3. The 
coefficients of (r-"' - l), ( r -  'I' - 1)' and ( r - @  - 1)3 have been separated. 

2.2. Second-order calculation 

The second-order calculation contains only chains of bubbles, both in aS-' , i?t  and A .  
These give rise to no momentum dependence and q vanishes in this approximation. 
These graphs (graphs l(c) and 2(c), figure 1) (exact in the spherical model n --f x) auto- 
matically give rise to a geometric series and consistency requires c = - 1 (equation 
(2.1 1)) or 

ug:"py = - 1. (2.14) 

The notation g)") is the value of a graph calculated at the dimension d (appendix 3) 
and pi") (appendix 4) is the number of times it appears in a given quantity (i is the graph : 
a the function that is being calculated). Our convention for the three values of c i  are: 

a = a dS-'/i?t 

a = b as- i iaqz (2.15) 
C L = C  A 

In these terms the coefficient a of equations (2.12) and (2.9) together with the O(u2) 
expansion of ?S- ' /d r  (graphs I(a), 2(a), figure 1) gives 

a = ug$"pf'. (2.16) 
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Table 2. Graphs of dS- ‘ /at .  In column I ,  the graphs are defined in the series for 2s- ‘ ldr  
according to the notation of figure I .  Expressions in the €-expansion, or values at d = 3 
(appendix 3), are the same as for the corresponding graph in the amplitude as it appears 
in column 3. The proper weight factors (appendix 4 )  are taken from column 2. 

For contribution 
Graph Weight see table I 

a l  I 
a2 ( n  + 2)/2 c2 
a3 (n+2)’/4 (.3 
a4 3(n + 2)/4 c.4 
a5 (n+2)’,/8 ( ,5  

a8 9(n + 2)’/4 cl I 
a9 ( n  + 2)’j2 c12 

a6 ( n  + 2) (n  + 8)/4 c6 
a7 ( n +  2 ) ( n + 8 )  c8 

Table 3. Graphs of dS-’idq’. Column 1 defines the graph according to the notation in 
figure 1 In columns 3 and 4 are the values at d = 3 (appendix 3 )  and in the 6-expansion 
respectively. In the three last columns. ihe contributions to (r-‘ - I ) .  ( r - ‘  ’ - I)’. (v‘ ’ - I)’ 
are given The subtraction procedure of figure 2 has been taken into account In these 
contributions the combinatorial factors (appendix 4)  have been omitted for simplicity They 
are found in column 2 for r # I ,  see note (b) of table 1. 

Contribution to dS- ‘/dq’ expanded in 
Z,’. , h i ( c ) ( r - “ 2 -  I ) A  

Value at 
Graph Weight d = 3  <-expansion hi (€)  hZ(4  h 3 ( 4  

hl I I 
1 

8 C  

I 
6 2  

b2 (n+2) /2  -5n2/216 - - ( I  - ~ / 4 + 0 ( ~ ’ ) )  2u”g:b’ u’g:b’ 0 

h3 (n+2) (n+8) /4  - 0  149 --(I - ~ / 4 + 0 ( ~ ’ ) )  u3(3g:b’-4gi’g:b’) U3(3g:b’-2g$’g:b’) u3g:b’ 

Equations (2.16), (2.14) and (2.12) give 

where the second term of (2.17) is obtained by reading off the weights from tables 1 
and 2. 

In this simple approximation the role of dimensionality in determining ;’ is restricted 
to the explicit E dependence displayed in (2.17) and does not manifest itself through 
the dimensional dependence of the integrals corresponding to the graphs. In three 
dimensions the value of ;’ is thus a pure combinatorial problem. One finds y = 1.14, 
1.20, 1.29 for n = 0, 1,  3 respectively as against the best calculated values of 7/6, 5/4 
and 1.40 (Domb 1970). The deviations are in the range 2-8 7;. 
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The value of U determined from (2.14) may be used to estimate g, say to O(u2). To 
calculate the b of equation (2.13) one expands dS- ’ /dq2  using the graph 2(b) (figure 1 ) :  

b = 2g$h’p$h’u2 (2.18) 

which with (2.13) and (2.14) gives 

(2.19) 

This shows that g depends on the way the dimensionality occurs in the integrals. In 
the case E -+ 0, one recovers Wilson’s estimate (Wilson 1972, formula 2) by using (2.19) 
and tables 1 and 3 :  

whereas direct evaluation at E = 1 ( d  = 3) of equation (2.19) gives 

+terms in O(u3) and higher 
40 n+2  g = - -  
27 ( n + 8 ) 2  

(2.20) 

(2.21) 

The factor of about three between equations (2.21) and (2.20) is just what is needed to 
bring the value of q into line. Clearly direct evaluation at d = 3 appears to be a better 
way to go about things. The detailed numbers are reported in table 4. 

Finally in table 5 we show a comparison of the higher-order terms in ( r P f i 2  - 1) 
when calculated on the one hand with the lowest-order estimate (2.14) and on the 
other hand self-consistently to O(u3). It will be seen that the crude estimate satisfies 
the exact scaling requirement tolerably well. It is then not surprising that the calculated 
indices are not far out either. 

2.3. Calculation to O(u3)  and O(u4) 

One might expect that the success of the lowest-order calculation would give rise 
to but small corrections in the higher-order terms. In point of fact this expectation is 
not borne out when the calculation is carried out to O(u3) owing to an interesting 
circumstance. Namely it gives a complex value for the coupling U (for E = 1)  when 
n 5 15. The scaling requirement is a second-order algebraic equation in O(u3). Thus 
in O(u3) there exists no real negative coupling U in the range n 5 15, ie corresponding 
to the required repulsive interaction. This is shown in figure 3. It is rather surprising 
that such a circumstance should arise in the evaluation directly carried out at d = 3 
whereas similar difficulties do not seem to arise in the c-expansion. However this 
ability of the c-expansion to scale up to O(c3) is but illusory when the c-expansion is 
examined at c = 1. This point is taken up in appendix 2 where it is shown that it is 
not possible to find a real negative U to 0 ( c 2 )  for c = 1 and n 5 23. It appears that use 
of the c-expansion at small E to determine physical properties at c = 1 is unjustified, at 
least in the perturbation sense currently in use. 

Fortunately, the situation changes radically at the order of u4. There is very con- 
siderable compensation between the effects of O(u3) and O ( u 4 t i n  fact to such an 
extent that the lowest-order condition for scaling ug$)p:) = - 1 is correct to within 
20% for all values of n (figure 3). The important point is that the series alternates. The 
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I 0 

Y 

Table 5. Check of scaling laws. The exponents of the series 8s- dS- ‘/dq2 and the 
four-point amplitude, computed with O(u2) graphs, fix the values for the coefficients of 
terms in ( r - ‘ ” -  These values appear in columns 2 and 4. They must 
be compared with the corresponding values appearing in columns 3 and 5 which have been 
calculated self-consistently to the stated orders using the data tabulated in tables 1 and 2. 
Agreement is semiquantitative. dS- ‘ /aq2 has not been tabulated since the order of the 
calculation is still too small. 

and (r-‘’* - 

+ 3 I 

Coefficient of 3s- d r  four-point amplitude 

( r - * / z -  1)2 0.274 0.259 1 1.22 
( r - e l z -  1)’ -0,218 -0.257 - 1 - 1.49 

I 

0 IO 
n 

Figure 3. (a) index y ;  (b) index q and (c) coupling U in terms of the number of components 
of the field. For convenience (see point (ii) of the caption) we plot ug:”p!’ instead of U. 
The labels I ,  2, 3 of the curves mean the calculations have been carried out to O(u2), q u 3 )  
and O(u4) respectively. This figure exhibits two main features of the d = 3 calculation. 

(i) The curve 2 (O(u3)) shows that that the coupling U goes to infinity when n - - 15. 
Below n - 15 the scaling condition, which is in this case a second degree algebraic equation, 
gives complex values for U which are physically meaningless. Hence there are no curves 
(to 0 ( u 3 ) )  in the region 0 5 n 5 15. 

(ii) The curves 1 and 3 (O(u2) and O(u4)) lie very close to each other. This is due to a 
partial compensation of terms in O(u3) and O(u4). This means that the condition 
ug$’p$’ = - 1 is approximately satisfied in O(u4) for all n. This shows the convenience of 
ug$’p$’ as variable instead of U. 

numerical values for the indices reported in table 4 are in excellent agreement with the 
best known values. 

The stability of the lowest-order calculation against corrections seems to us a good 
indication of the validity of the method. It  is then satisfying that such good agreement 
with the best series values is obtained. 
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Appendix 1. Spherical model 

In order to illustrate the meaning of the power series of the expansion (2.5), let us con- 
sider for the case n -+ CO the ratio of four-point amplitudes for two different masses. 
After summation of the geometric series of the amplitude one finds 

U 
A(0, r ,  A) = 

1 - u(gf’(0, r )  - gf’(0,  A)) ‘ 
(A. 1.1) 

The cut-off A is of the order of the lattice spacing. Introducing a second mass r’,  the 
amplitude can be written as 

(A. 1.2) U 
A(0, r ,  A) = 

1 - u(gf’(0, r’) - gf’(0, A)) - u(gf’(0, r )  - gf’(0, r’))  

or, when A(0, r’, A) is used, 

(A.1.3) 

Redefining the coupling U as uA(0, r’, A), the last expression is similar to (A.l.l), where 
the cut-off A has been replaced by the mass r’. But as the choice of r‘ is free, r’ can be 
taken arbitrarily near to the mass, then each term of the geometric series is as small as 
is required to get convergence. A similar re-interpretation of A in terms of a second mass 
applies to the original c-expansion in powers of Igr. Moreover, the scaling relation 
u’gf’(0, r ’ )  = - 1 gives the ratio for the amplitudes : 

(A. 1.4) 

The above mentioned scaling relation u’gk’(0, r’) = - 1 is concerned with the same 
graphs as those of O(u2) for arbitrary n (taking into account the proper combinatorial 
factors). Moreover the absence of infrared divergences for this class allows one to 
find a similar scaling condition for q2 >> r .  

For the sake of completeness, let us sketch the derivation of the critical indices for 
the spherical model n -+ CO. Recall that q vanishes since the weighting factors in the 
series 8s- ‘ /8q2 are one order lower in n than the chains of bubbles of the amplitude 
(q is O(l/n)). If the series dS- ’ /8 t  which gives the index y contains the same graphs as 
the amplitude, then the scaling exponents are equal for both series. Thus a = c = - 1 
and (equation (2.12)) gives ;’ = 2 at c = 1. 

Appendix 2. t-expansion 

In order to make clear the comparison between the calculation in d = 3 to O(u3) and 
the c-expansion, we sketch the c-expansion in a manner analogous to the methods of 
the present paper. 



Critical indices in three dimensions 605 

The relation (2.1 1 )  for the amplitude gives the following condition when q is 

(A.2.1) 

neglected : 

- 1 = ugppy + u2py[2gp - ( g p ) 2 ~  + 0 ( ~ 3 ) .  

Inverting (A.2.1) and introducing ug$)p$) = - 1 +O(c) one finds 

1 p p  gp 
ugl"p';' - CPW k;')' 
- - - 1 +-( 2 7 -  1 )  +O(f2), (A.2.2) 

The c-expansions of the graphs in (A.2.2) are found in table 1 .  Inserting them into 
(A.2.2) the following coupling is deduced : 

-2t 1 5n + 22 
n + 8  -( 1+2m U = -  (A.2.3) 

This result slightly differs from Wilson's (1972)?, due to the approximation in the ex- 
ponent of the amplitude, where the effects of q are here neglected. If we do not use 
q = 0, but q = 3n +2)(n +8)-'c2 found previously in (2.20), then complete agreement is 
obtained : 

- 2 t  1 9n + 42 
U = -  1 +--- 

n+8 -( (n+8)' 
(A.2.4) 

But this correction of about 5 %  is of secondary importance, when d = 3. The main 
difficulties arise from the use of the t-expansion for E = 1 and for physical values of 
n = 0, 1,2 ,3 .  The derivation contains two sources of errors when c is finite, namely 
the extrapolations to c = 1 of the values of the graphs, evaluated from the first few 
terms of their series as well as the corresponding extrapolation of the coupling U. 

It is the extrapolation procedure in U which leads to qualitatively misleading results. 
Namely replacement of the graphical integrals in (A.2.1) by c-expansions does not lead 
to results which differ by very much from the value of U obtained by calculating the 
graphs directly in three dimensions. A far more serious error is induced when one 
inverts (A.2.1) to obtain U as an t-expansion which is truncated at early orders. 
Effectively, the equation (A.2.1) for the coupling U is soluble only when n 2 23 instead 
of n 2 15 in the case d = 3. 

The index y is related to the series a S - ' / a t  by the relation (2.12). One finds: 

1 
(A. 2.5) 1 + &U{ pf'g:"' + upk"'[2gk"' - ( g f ' ) 2 ]  + . . .} . Y =  

The expression (A.2.4) for U and the c-expansions of graphs, found in tables 1 and 2, 
give 

+ * (n' + 22n + 5 2 ) ~ ~  + 0(c3 ) .  y = l+----f+----- 
4(n + 8)3 

n + 2  
2(n + 8) 

The index q is obtained from relation (2.13) and the series dS- ' /aq2  (table 3) :  

These calculations show how the c-expansion and the procedure in d = 3 differ. 

(A.2.6) 

(A.2.7) 

t Deduced from equations (8), (9) and (10) of Wilson (1972). 
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For comparison the values of two typical graphs are listed in both cases, c-expansion 
and d = 3, in table 6. The second source of error in the c-expansion which we have 
mentioned is more serious. Namely the extrapolation procedure in U allows a coupling 
to be found although the scaling is not fulfilled in the sense of relation (2.11). 

Table 6. Comparison of c-expansion and d = 3 calculation for graphs 2c and 4c (figure 1). 
The second column is the value at d = 3, the third column contains the contribution of 
the highest pole in c, and the fourth column an evaluation to the next order. Formulae are 
given in table 1. 

Graph d = 3  €-expansion at = I 
___ 

g!’ n/4(-0.785) I 0.5 
gkc’ d / 2 4  (-0.41 I )  0.5 0.25 

Appendix 3. Graphs for d = 3 

We use the following convention to define k, : 

or 

k, = (2n2)-’. 

Then after integration on the momentum the graph gf) is given by 

(A.3.1) 

(A. 3.2) 

The graph g t )  is integrated. Taking into account the expression (A.3.2) one finds: 

More generally the graphs with exchanges of A bubbles can be written as:  

The graph gf) taking into account (A.3.2) is written as 

d(cos f3)+pz I tan - ’ ( 12/4r) l i 2  

( P 2 + r ) 2 [ ( ~ + I ) Z + r ] ( 1 2 + r )  ’ 

dp dt 
gf’ = 2 

Integrating on cos 8, it follows that 

An integration by part for the momentum p gives 

k3n2 1 dl tan- ‘(12/4r)’/’ 
8 J r l 0  (12+r)(12+4r) ‘ 

g(8c) = J - 

(A.3.3) 

(A. 3.4) 

(A.3.5) 

(A.3.6) 

(A. 3.7) 
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The graph gt! taking into account (A.3.2) is written as 
2 l / 2  dp dl @(cos 6)p21 tan-'[;) . 

[(p + r)2 + r]2( p2 + r)2 

Integrating on the angles, one gets 

(A.3.8) 

(A.3.9) 

(A. 3.1 0) 

For the graph g'fh we have not performed an exact calculation. But, as it contains one 
more momentum than g t ) ,  it may be estimated smaller than (SO.10). This gives a 
value of say 0.05, a crude confirmation of which has been given by a small Monte Carlo 
calculation. 
Graphs of dS- ' / a q 2 .  Taking into account (A.3.2) one finds for gy)  : 

(A.3.11) 

Similar expressions are found for g?'. 

Appendix 4. Combinatorial factors 

For the sake of completeness we sketch here the calculation of the combinatorial factors 
(listed in tables 1, 2 and 3) of the Feynman graph expansion of the Lagrangian (2.1). 
The weight of each graph (figure 1) includes (a) a symmetry factor; (b) a number of 
ways of coupling. For point (a) the reader is referred to Englert (1961). We specify 
point (b). 

The pairing of the indices of the external fields, implied by an interaction term 
~(141~)~ of the Lagrangian, can be depicted with a fictitious heavy meson (dotted line) 
(figure 4). The three channels (figure 4) are present if one component of the field is con- 
cerned. Alternatively, when the components of the external field are different, only 
one channel occurs. 

In general it is necessary to take into account that the n components of the field 
contribute to coupling when the indices of a subgraph are not connected to other 
subgraphs. In the language of the fictitious heavy meson, it means that the solid lines 
of a subgraph are disconnected from the rest of the graph. One has then to classify the 
graphs with completely decomposed vertices according to their number E of uncon- 
nected solid lines; the weight of the class is sn', where s denotes the number of graphs 
of the class 1. 

Moreover, it is always possible to express the weight of a graph of order p by means 
of the weights of graphs of order p-  1. The complete decomposition of the graph of 
order p-  1 is worked out by decomposing one of the vertices (figure 4). If this operation 
disconnects two solid lines, the weight of the corresponding p-1 graph has to be 
multiplied by n ;  in other cases it has to be multiplied by one. The mechanism of this 
procedure appears in figure 4 for the first orders. 
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0 Q 8 - n Q  + Z  

Figure 4. Weight factors. Relation between weight factors of graphs of successive orders. 
Results are listed in tables 1 ,  2, 3. As an example, the weight factor of graph 4c (figure l(c)) 
is the weight of graph 4a (figure l(a)) plus twice the weight of graph 2c (figure l(c)). The 
three alternative ways of decomposing the graph 8c (figure l(c)) are given. 
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